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An Arbitrary Lagrangian-Eulerian Method 
with Local Structured Adaptive Mesh 

Refinement for Modeling Shock 
Hydrodynamics 

*’ 

R. W. Anderson: R. B. Pemberl N.S. Elliott* 

Center for Applied Scientific Computing 
Lawrence Livermore National Laboratory 

P.O.Box 808 
Livermore, CA, 94551 

A new method that combines staggered grid Ar- 
bitrary Lagrangian-Eulerian (ALE) techniques with 
structured local adaptive mesh refinement (AMR) has 
been developed for solution of the Euler equations. 
This method facilitates the solution of problems cur- 
rently at and beyond the boundary of soluble problems 
by traditional ALE methods by focusing computa- 
tional resources where they are required through dy- 
namic adaption. Many of the core issues involved in 
the development of the combined ALEAMR method 
hinge upon the integration of AMR with a staggered 
grid Lagrangian integration method. The novel com- 
ponents of the method are mainly driven by the need to 
reconcile traditional AMR techniques, which are typi- 
cally employed on stationary meshes with cell-centered 
quantities, with the staggered grids and grid motion 
employed by Lagrangian methods. Numerical exam- 
ples are presented which demonstrate the accuracy and 
efficiency of the method. 

1 Introduction 
The numerical simulation of compressible flows with 

shocks and discontinuities is a computational chal- 
lenge in many important application areas including 
aeroelasticity, inertial confinement fusion (ICF), as- 
trophysics, and plasma physics. Resolution of small 
scale flowfield features such as shocks, material in- 
terfaces, and regions of instability requires a large 
number of computational cells in these regions. La- 
grangian and ALE techniques have often been fa- 
vored in the above application areas,l in part due to 
the self-adapting nature of Lagrangian grid motion, 
e.g., contact discontinuities are tracked automatically, 
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and cells are clustered into high density regions be- 
hind shocks. However, this inherent form of adaption 
present in Lagrangian and ALE methods, while an 
advantage over pure Eulerian codes in some applica- 
tions, is less general and robust than a dynamically 
adaptive method in which the number of cells may 
change with time. When the number of cells in a struc- 
tured grid is not variable, such as in traditional ALE 
methods, an increase in resolution in one region neces- 
sitates a decrease in resolution in some other region. 
Furthermore, deformation of structured grids suffers 
from limitations in the geometrical complexity that 
can be described, much in the same way that struc- 
tured grids have limitations for complex geometries. 
Finally, efficiency is in general suboptimal with a stat- 
ically adaptive grid, since resolution requirements may 
vary throughout the simulation time. 

An approach which has proven effective in address- 
ing these problems is structured grid local adaptive 
mesh refinement (AMR).2-5 AMR involves the addi- 
tion and removal of mesh cells as required to maintain 
a specified level of accuracy, as opposed to maintaining 
a fked cost. As illustrated in Fig. 1, this technique 
involves the successive refinement of regions of a struc- 
tured mesh where additional resolution is required. 
Extension of the AMR idea to Lagrangian and in turn 
ALE solution techniques is nontrivial due to several 
factors. The first is that AMR was originally devel- 
oped in the context of algorithms that employ cell- 
centered variables on Cartesian meshes. Lagrangian 
methods, by contrast, are often developed by utiliz- 
ing a staggered grid, where thermodynamic quantities 
such as density and energy are located at cell centers, 
while the kinematic quantities of position and veloc- 
ity are located at the mesh intersections, or nodes. 
This change, along with the non-Cartesian nature of 
a Lagrangian grid, necessitates new solution transfer 
operators between coarse and fine meshes. Further- 
more, the methods responsible for synchronization of 
fine grid and coarse grid solutions must be modified to 
suit a Lagrangian context on a staggered grid. Finally, 
grid motion is a new component with respect to AMR 
methods, and the coupling between fine and coarse 
grid motion in the AMR hierarchy must be estab- 
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Fig. 1 An example of adaptive mesh refinement 
showing a properly nested hierarchy of grids. 

lished. Although some work has been done with non- 
Cartesian structured grids in an Eulerian context,6 the 
methodology presented here is a fundamentally differ- 
ent approach. 

2 

The governing equations of inviscid gasdynamics are 

Equations of Motion and the ALE 
Method 

discretized from the Lagrangian form: 

Dp + + - f p v  -v = 0 

p-+vp=o 

D t  
DV -. 

D t  
De 
D t  p- + p a  - 9  = 0. (3) 

where p, e, p, and ? are the fluid density, internal en- 
ergy, pressure, and velocity respectively, and t is time. 

The ALE method employed for integration of the 
system (1)-(2)-(3) is of the explicit, time-marching, 
Lagrange plus remap type. Schemes of this type in- 
volve two distinct phases. In the first phase, a La- 
grange step advances the flowfield through a physical 
timestep. The second phase involves a modification of 
the grid and a remapping of the solution to the new 
grid. The modification may be to the original Eulerian 
grid, or it may be to a “relaxed” grid that has been 
smoothed in some manner. The grid remapping p r o w  
dure alleviates the mesh tangling problem inherent in 
the Lagrangian methods for flows with vorticity. The 
mesh relaxation algorithm employed here is essentially 
a Laplace iteration, and has its origins in the work 
of Wins10w.~ The solution interpolation procedure is 
formulated as an apparent advection problem, and is 
discussed in Section 2.3. 
2.1 Lagrange Step 

The Lagrange step follows the general approach 
taken by Tipton.s It employs a predictor-corrector dis- 
cretization in time, and the HEMP spatial discretiza- 
t i ~ n . ~ * l ~  The scheme employs a monotonic artificial 
viscosity due to Christensen,” and a kinematic hour- 
glass fdter.12 The two-dimensional scheme has been 
described extensively previously; algorithmic details as 
well as comparisons with more widely known Eulerian 
methods can be found in a recent work by Pember, et 
d.13 

Fig. 2 Staggered Mesh and Control Volumes. 
Mass and energy control volumes 1 - 2 - 3 - 4 - 1 
surround each cell, while momentum control vol- 
umes 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 5 surround each 
node. 

The key feature of the Lagrange step with re- 
spect to the development of the AMR algorithm is its 
staggered mesh arrangement with density and energy 
stored per cell, while position and velocity are stored 
per node, as shown in Fig. 2. This choice leads to 
two control volumes, the first formed from the mesh 
quadrilaterals such as 1 - 2 - 3 - 4 - 1, and the sec- 
ond formed from the “dual mesh” octagons, such as 
5-6-7-8-9-10-11-12-5. The dual mesh is con- 
structed from segments with endpoints located at the 
midpoint of edges and cell centers. Following Tipton, 
Pember13 describes an optimization which constructs 
equivalent dual control volumes. However, in the inter- 
est of consistency with forthcoming three-dimensional 
extensions of the method, we do not exploit that opti- 
mization in this work. 

The Lagrange step summarized in its most phys- 
ically intuitive form consists of the computation of 
F’ = ma to obtain accelerations at every node, followed 
by a kinematic integration of node positions and ve- 
locities, and concludes with an energy update for the 
resulting pdv work on each cell over the time step. 
The forces involved in the computation of nodal accel- 
erations include a pressure which is assumed constant 
in each cell, an artificial viscosity which suppresses os- 
cillations around shocks, and anti-hourglassing forces 
which prevent the growth of nonphysical hourglassing 
or checkerboard modes arising from a nullspace of the 
evolution operator. In order to compute nodal acceler- 
ations, a nodal mass must be defined, and the HEMP 
discretization defines the nodal mass to be the aver- 
age of the surrounding cell masses. This definition has 
important consequences for the interlevel transfer op- 
erators described in Section 3.2. 

2.2 Mesh Relaxation 

At the end of a Lagrange step, it is often desirable 
to smooth the grid to prevent excessive mesh distor- 
tion which can lead to inaccuracy or even failure of 
the Lagrangian algorithm. An effective smoothing al- 
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gorithm can be based upon a Laplace iteration for the 
transformed coordinates with respect to the Cartesian 

tion, expressed in two dimensions as 
. coordinates of each node. We employ a Laplace equa- 

(4) 

where = i, j are the transformed coordinates, and the 
x,y are the Cartesian coordinates of a node, to con- 
struct an iteration that drives mesh lines towards an 
equipotential solution. Note that this is distinct from 
a simple averaging method, which represents an itera- 
tion derived from a Laplace equation for the Cartesian 
coordinates with respect to the transformed coordi- 
nates. Simple averaging methods are known to suffer 
from robustness problems and can tend to produce 
"folded" grids. Upon inspection this is not too surpris- 
ing, since such an iteration drives the nodes towards an 
equipotential solution with respect to the transformed 
space, which is not necessarily well-behaved. 

In order to construct an explicit iteration for the 
positions of nodes, we invert equation 4 to obtain 

where f is the x or y coordinate of a node, and the 
local metric terms gmn are given by 

911 = (g)2+($)2  

g22 = (g)2+($) . 

axax a y a y  
912 = -- + -- ai aj ai aj 

2 

Discretizing with central differences produces the 
mesh relaxation iteration 

1) 
1 

+ p 1 2  ( f i+ j -  - f i + j +  + fi++ - i-j- 

where the notation f i+  denotes f i + l , j ,  etc. 

2.3 Solution Remap 
Once the relaxed mesh has been defined, it remains 

to interpolate the solution from the old Lagrange grid 
to the relaxed grid. We cast this interpolation in terms 
of an apparent advection equation 

t2- 1 

6 t 

2) 43<}+ i 

Fig. 3 Hierarchy time stepping - logical diagrams. 
The sequence on the left represents a time refined 
calculation, and the sequence on the right repre- 
sents a calculation with no time refinement. Num- 
bered sequence is for two level hierarchy. Dotted 
lines indicated operations with third level. 

w and r denote an arbitrary scalar quantity defined 
on the grid and a pseudetime, respectively, and 

are the jacobian, normal vectors, and apparent grid 
velocity. 

This advection equation is solved using a variant of 
the Corner Transport Upwind (CTU) scheme' for use 
on a staggered grid. The algorithmic details of the 
scheme have been discussed in detail in Pember,13 et 
al. 

3 ALEAMR Algorithm 
3.1 AMR Overview 

The conceptual starting point for the AMR method- 
ology development is the pioneering work of Berger, 
Oliger, and C ~ l e l l a . ~ ~ ~ ~  In this approach, a hierarchi- 
cal grid structure is employed which changes dynami- 
cally in time, and is composed of logically rectangular, 
uniform grids of varying resolution. In the original 
work, the grid hierarchy is constructed so that a coarse 
grid cell is covered precisely by rd fine grid cells, where 
r is a user specified integer called the refinement ratio, 
and d is the spatial dimension of the simulation. The 
solution is defined on all cells, including coarse cells 
which underlay cells of finer resolution. The collection 
of grids at a given resolution is referred to as a level. 
The hierarchy can have an arbitrary number of levels 
and any number of grids at a given level. A time step 
on the hierarchy of levels is a recursive procedure when 
time refinement is used, which we describe here for a 
two level calculation. 

The first step is to regrid the current solution, shown 
in Fig. 3 as process 1 at time t o  from level ZO to Z I ,  
by refining regions of the flow requiring greater reso- 
lution. Cells requiring refinement are tagged and then 
grouped with untagged cells to create relatively large 
blocks of the coarse grid that will be refined. These 
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blocks are then subdivided to create the new fine grids. 
When new fine grid cells are generated in the process, 
the solution is defined by interpolation of the coarse 
grid data. Interpolation operators employed in the La- 
grangian context are discussed in the following section. 

The next step is a coarse grid advance, in which 
the coarse grid data is integrated to some new time t l ,  
shown as step 2 in the diagram. In a time refined d c u -  
lation, the fine grid is then advanced through multiple 
time steps to the same time as the coarse grid, as in- 
dicated by step 3. The principal consideration in the 
fine grid advance is the boundary conditions employed 
on the fine mesh, in particular at coarse-fine mesh 
boundaries. Typically this is achieved through time 
and space interpolation of coarse grid data to provide 
Dirichlet boundary conditions. It turns out that the 
split nature of the ALEAMR scheme complicates the 
boundary conditions for subcycled time steps to the 
point where we have foregone time refinement in the 
ALE context. For a strictly Lagrangian calculation, 
there is no difficulty and time refinement may be em- 
ployed. 

The final step in a traditional hierarchy advance is 
synchronization of the coarse grid and fine grid data, 
shown as step 4 in the diagram. This is often ac- 
complished in two steps. First, a coarsening operator 
replaces any coarse grid data for which fine grid data is 
available, on the presumption that the solution a d -  
able from the fine grid is more accurate than that on 
the coarse grid. Second, the coarse cells which are ad- 
jacent to a fine grid boundary are updated to reflect 
the fluxes which were provided by the fine grid at those 
boundaries over the succession of fine grid advances. 
This flux correction procedure ensures conservation 
in a global sense on a composite mesh consisting of 
only the finest available data, since the coarse grid 
and fine grid fluxes will not in general be the same 
at grid boundaries. For the staggered mesh method 
employed in the Lagrange step, a quadrature rule to 
define global conservation, especially with respect to 
momentum, is less clear and is certainly not unique. 
As a consequence, we have opted at this stage not to 
employ any type of flux correction. While we would 
prefer to have a flux correction that maintains global 
conservation with respect to some quadrature rule, it 
is found that in practice there is no appreciable loss 
of accuracy in not doing so. At present, we defer this 
development to future refinement of the algorithm. 

3.2 Interlevel Transfer Operators 

Interlevel transfer operators are required when new 
grids are created, for the generation of pseudo bound- 
ary conditions on finer levels in the hierarchy, for syn- 
chronizing coarse and fine data in the hierarchy, and 
upon the removal of refined grids. 

The operators development here are designed with 
the following properties in mind: 

Fig. 4 Odd reflnement ratios are required to 
maintain a one-to-one correspondence between flne 
nodes and their corresponding coarse nodes in the 
locally conserved stencil. 

I I I :  I 

I I 

Z 1  Z2 Z3 ZN-1 ZN - AZO- 
Fig. 5 A coarse cell reflned into N-1 flner cells. 

i) Freestream preservation 

ii) 2nd order accuracy (in smooth regions) 

iii) Monotonicity 

iv) Local conservation 

v) Coarsening identically inverts refinement 

Property v supports the notion that the interlevel 
operators should not result in nonphysical evolution of 
the flowfield. A simple way to ensure that properties iv 
and v are simultaneously achieved is to maintain a one- 
to-one correspondence from fine nodes to coarse nodes 
in the interpolation stencil, such that the locally con- 
served regions on the fine mesh do not overlap. In this 
case inverting a locally conservative interpolation is 
simply a matter of summing the fine values of the con- 
served quantity in the stencil. This leads to a choice 
of odd refinement ratios, as illustrated in Fig. 4. For 
a cell-centered scheme, the choice of refinement ratio 
is arbitrary, but for a nodal or staggered scheme, only 
odd ratios preserve the one-to-one correspondence. 

Consider a one-dimensional interpolation of some 
scalar density function 4 with a known slope 4h and 
average value $0 over some interval AZO, into N-1 ar- 
bitrary subintervals A x k  = xk+l - Z k ,  as shown in Fig. 
5. 

An interpolation in which values are taken from the 
centers of the subintervals 

where z k  = 1 / 2 ( X k  + Z k + 1 ) ,  is locally conservative of 
&Ax in the sense that 

N 

4 k A Z k  = &AZO, 
k=l 
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\ I  

Fig. 6 Results of the directionally split refinement 
operators may be averaged to obtain symmetry 
with respect to i and j coordinate directions. 

since 
N / N  

k=l  \k=l 
(6) 

The final term in brackets is identically zero, in dis- 
crete analogy with J x  dz = i x 2 .  In a free stream, all 
slopes &, are zero, and constant fields are preserved 
independently of the mesh. We now have a general 
one-dimensional expression for interpolation that sat- 
isfies i, ii, and iv. In order to address iii, we employ 
the Van Leer limited slope defined by 

where AL+ = r$i - & I ,  ARq5 = -&, and AC$ = 
5 (&+I - &I), in determining the slopes &, from the 
coarse grid data. 

If we desire to prevent oscillations in the primitive 
variables 4 = (p ,u,v ,E) ,  where E is the total energy, 
the required interpolation basis to obtain local conser- 
vation is x = (V,f i , f i ,m),  where V is volume, f i  is 
nodal mass, and m is cell mass, i.e., we choose “vol- 
ume coordinates’’ for density, and “mass coordinates” 
for components of velocity and total energy. 

A difficulty arises with respect to conservation of 
momentum upon refinement. The demonstration of 
conservation (6) only holds provided the interpolation 
basis itself is locally conserved, i.e., 

1 

N 

k=l 

In the case of density refinement, cell based volume 
coordinates do satisfy this condition since subvolumes 
are generated by a subdivision of coarse volumes. 
Since cell volumes and densities are conserved, so are 
cell masses, and hence energy interpolation is also con- 
servative. However, in general it will not be true that 
the s u m  of the fine nodal masses will correspond to 
the coarse nodal mass. It is not difficult to construct 
a conservative interpolation if one is willing to dis- 
pense with freestream preservation, but we consider 
freestream preservation to be more fundamental than 
conservation of momentum. It may also be possible, 

Fig. 7 On the left, “fieen flne boundary nodes 
introduce non-quad elements. On the right, inter- 
level boundary conditions interpolate positions to 
preserve quad elements . 
for some values of r ,  to construct a mesh subdivision 
such that the requisite local nodal mass conservation 
is preserved, but at this stage of the development of 
the ALEAMR algorithm we prefer to choose the mesh 
refinement arbitrarily at the expense of strict momen- 
tum conservation. 

The one-dimensional refinement operators may be 
extended to multi-dimensions by a directional split- 
ting and successive application of the one-dimensional 
method. There are two choices for the ordering in two 
dimensions, and in general the operators will not com- 
mute. If i j  symmetry is desired, the results of both 
the i j  and j i  refinement operators may be averaged, 
as illustrated in Fig. 6. Note that the limited slopes 
are computed once from the coarse data and are not 
recomputed after the first refinement pass. 

The coarsening operators are then simply weighted 
sums of the conserved quantities on the fine mesh, i.e., 

where i varies over the refinement stencil correspond- 
ing to each coarse node. The coarse mesh is formed 
by selection of every r’th mesh point. 

3.3 Interlevel Boundary Conditions 
Pseudo boundary conditions at refinement bound- 

aries on finer grids in the hierarchy require carefuI 
treatment. The principle consideration is the spatial 
synchronization of the coarse and fine boundary nodes 
which will in general not stay aligned without special 
treatment. We have chosen to linearly interpolate, first 
in time, if necessary, and then in space, the positions of 
boundary nodes, and employ the refinement operators 
developed in the previous section for all other quan- 
tities in ghost regions. This is motivated by a desire 
to always have quad shaped elements on a composite 
mesh. If boundary node positions were integrated ac- 
cording to the numerical scheme rather than imposed, 
then in general there would form non-quadrilateral el- 
ements, as shown in Fig. 7. 

Except in the special case of a strictly Lagrangian 
calculation, interlevel boundary condition considera- 
tions lead us not to employ refhement in time for the 

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2002-0738 



.................... 3(3 Q 2  

5 /$ ......... 

....... Remap 
- Lagrange 

Fig. 8 
mesh node at coarse-fine boundary. 

following reason. Consider a Lagrange plus remap hi- 
erarchy advance in a two-level calculation at a coarse- 
fine interface in one dimension, as shown in Fig. 8. 
First the coarse level is advanced in time from position 
1 to 2 in a Lagrange step and then remapped to its final 
location 3. The coarse Lagrange step data is used to 
enforce a boundary condition on the fine grid advance 
from 1 to 4. Any other choice for boundary condition 
on the Lagrange step would not be freestream preserv- 
ing. After a remap on the fine grid to, say, position 
5,  there is no coarse grid Lagrangian solution through 
point 5 in z - t to provide a boundary condition for 
further Lagrange subcycles. One alternative would be 
to fix the boundary node during the relaxation step, 
and continue using the Lagrange path 1-2 as a bound- 
ary condition until the fine grid was advanced to the 
same time as the coarse grid. In order to then sy- 
chronize the coarse and fine grids, the fine boundary 
node would need to be relaxed to position 3. In general 
this would require an iterative relaxing and remapping 
procedure as the stability criterion on remap requires 
the overlap of the original and final grids. Therefore 
a bound on the distance from 2-3 is the coarse mesh 
width, which is rougly r times the fine mesh width. It 
is reasonable then to expect that on the order of r re- 
lax/remap iterations would be required to advance the 
fine mesh boundary node from position 2 to 3. Rather 
than implement this additional complexity into the al- 
gorithm, we have chosen not to use time refinement, 
except in the case of a pure Lagrangian calculation. 

A generalization of the analysis done by Quirk15 to 
N-dimensional calculations provides some additional 
insight into the impact on the efficiency of the method 
without time refinement. 

If level 0 is composed of m cells, and each finer level 
I covers a constant fraction a of the level I - 1 below 
it, then the total work of a time-refined calculation 
through one coarse grid timestep is 

0 - fine mesh boundary node. o - coarse 

l=O 

where d is the spatial dimension of the calculation. 
Since it will require rlmo- time steps to advance all 

Fig. 9 Theoretical work ratio of spatial and time 
refinement over spatial refinement only, as a func- 
tion of the coverage ratio of finer grids with respect 
to the next coarser grid. 

levels in a calculation without time refinement to the 
same time, the total work in that case is 

Taking r = 3 as representative for our purposes, we 
plot the log of the speedup of a calculation employing 
time refinement in Fig. 9 for I,,, of 1 and 3. I,,, is 
the number of refined levels, so that the total number 
of levels in the calculation is I,,, + 1. 

It is evident that for calculations that employ only 
very small fractions of refinement of the total domain, 
time refinement provides a great benefit. However, 
especially in three dimensions, for which efficiency be- 
comes paramount, the curves fall quite rapidly with 
increasing a, and indeed for a calculation with ratios 
of more than about 15%, the benefits of time refine- 
ment become increasingly marginal. 

3.4 Implementation 

The implementation utilizes SAMRAI,l6 an object- 
oriented framework for the development of structured 
grid adaptive mesh refinement applications. The 
framework has been extended to accommodate many 
of the novel or unusual AMR features developed in 
the current work. The SAMRAI framework is a C++ 
library, and the application code was developed us- 
ing both C++ and FORTRAN 90, with FORTRAN 
90 being reserved for performance of critical inner 
loop constructs. We have found this dual language 
choice to be an effective paradigm for scientific calcu- 
lation when the algorithms and data structures are of 
sufficient complexity to warrant the abstraction mech- 
anisms provided by the C++ language. 
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Fig. 10 Adaptive Sedov solution with one level of 
refinement. Base grid 64x64, r = 3. 0 - 32x32, No 
adaption. 0 - 96x96, no adaption. v - 32x32 level 
0; 0 - 32x32 level 1. - - exact solution 

4 Numerical Results 
For the following examples we employ a simple 

heuristic error indicator based on f”Ax. We in fact 
set two thresholds for the relative error fl’Ax/ f ,  one 
which is used when a region is already refined, and one 
which is used when a region is unrefined. This is useful 
to prevent excessive refinement and de-refinement in 
regions which are hovering near the indicator’s thresh- 
old. 

4.1 Cylindrical Taylor-Sedov Blast Wave 

The Taylor-Sedov blast wave describes the self sim- 
ilar motion following an intense explosion. It consists 
of the sudden release of an amount of energy E con- 
centrated at a point, and has an exact solution which 
can be derived entirely on dimensional gr01mds.l~ We 
model this with initial conditions of a no-flow, uniform 
density field, and an initial energy which is everywhere 
zero except for one cell at the origin. We compute one 
quadrant of the symmetrical flowfield with an initial 
energy of 8, 7 = 5/3, and po = 1. 

Two non-adaptive calculations are compared with 
an ALEAMR calculation utilizing one level of refine- 
ment. The single level resolutions are 32x32 and 96x96 
cells. The ALEAMR calculation has a base resolution 
of 32x32 cells, and one level of refinement at r = 3, 
such that the “effective” resolution is 96x96 cells. 

Fig. 10 compares data from all three solutions with 
the exact similarity solution at t = 0.1 from the origin 
to the shock front. Fig. 11 details the shock region. 
The adaptive calculation is nearly indistinguishable 
from the calculation at full resolution everywhere. 

4.2 Double Mach Reflection of a Strong Shock 
It is for more ambitious calculations with a wider 

disparity of length scales that the adaptive capability 

Fig. 11 
0 - 96x96, no adaption. 
32x32 level 1. - - exact solution. 

Detail of Fig. 10. 0 - 32x32, No adaption. 
v - 32x32 level 0; 0 - 

really begins to pay significant dividends with respect 
to efficiency. In the double mach reflection problem, 
first presented by Woodward and Colella,18 a Mach 
10 planar shock in a perfect gas with 7 = 1.4 reflects 
from a ramp at an incident angle of 60”. The domain 
is 3.5 units long and 1 unit high, and the ramp begins 
.3 units from the left end of the domain. The preshock 
density and pressure are 1.4 and 1, respectively. At the 
top face of the domain, inflow boundary conditions 
representing the exact evolution of the propagating 
shock are imposed. For this problem, we choose to 
demonstrate the Eulerian capability of the algorithm, 
in part due to the simplification afforded in imposing 
the propagating shock conditions at the top of the do- 
main on a stationary, non-deforming grid. 

An r = 3,1,,, = 3 calculation with a base res- 
olution of 224x76 is shown in Fig. 13. Finer level 
grid boundaries are outlined, and line contours of den- 
sity are plotted. The closeup of Fig. 14 displays the 
details of the “wall jet” region, including the well- 
captured vortex rollup. Comparing with the results of 
Pember,13 we can find no qualitative indications that 
the AMR components of the scheme are adversely af- 
fecting the solution, and indeed find solutions to be 
qualitatively indistinguishable when computed either 
adaptively or fully at a given “effective resolution,” 
provided that the adaption criteria are sufficiently cap- 
turing the salient features of the fIodeId. 

The efficiency of the adaptive capability is indicated 
by comparing the wall clock time for the I,,, = 3 cal- 
culation with a fully resolved calculation. On a single 
1.5 GHz Pentum Xeon processor, the adaptive calcu- 
lation required 49,765 s of wall clock time, and the 
equivalent, fully resolved calculation required 180,367 
s, for a speedup ratio of 3.6. Note that we have made 
no particular efforts at this juncture to optimize our 
implementation with respect to the AMR overhead, 
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Fig. 13 Double Mach Reflection of a Mach 10 Shock. ALE-AMR algorithm in Eulerian mode, Le., 
remapping to the original grid. I,,, = 2. I1 grid boundaries are in heavy black outline, 12 grid boundaries 
are in light black outline. 

t 

Fig. 14 Detail of Fig. 13 showing the wall jet rollup. 
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